

PHOTOvoltaic and optoelectronic applications

NANOPHOTO Final meeting

Work Package 4 Prototyping and characterization

NANOPHOTO Final meeting

PHDTDvoltaic and optoelectronic applications

- Work package overview
- P-type and intrinsic layer characterisation
- PIN Solar cell fabrication process
- IV curves
 - Merten collection model
 - Results
- Conclusion

University of Konstanz Barbara Terheiden / Gabriel Micard NANOPHOTO Final meeting

PHOTOvoltaic and optoelectronic applications

Work Package Overview

Task 4.1 Fabrication of opto-electronic devices and preliminary characterization and testing

Task 4.2 Characterisation of opto-electronic devices

Remark: Focused on development and characterisation of nc-Si thin-film solar cells

University of Konstanz Barbara Terheiden / Gabriel Micard NANOPHOTO Final meeting

PHOTOvoltaic and optoelectronic applications

PIN-Si thin-film solar cell "Superstrate" Configuration

Back contact: Ag or Ti

n-type nc-Si 30-60 nm

intrinsic nc-Si 1-4 µm

p-type nc-Si 30-60 nm

ZnO:Al 1 μm

Glass 1 mm

University of Konstanz Barbara Terheiden / Gabriel Micard

PHOTOvoltaic and optoelectronic applications

Space Charge Limited Current (SCLC) case of material with deep traps in a band tail

- If there is a density of traps >> density of free carriers
- Uniformly spatially distributed
- With an energy distribution such as: g(E) = A * exp((E_t-E_c)/kT_c) with T_c characteristic temperature of the band tail T_c ≥ T_{measurement}
- The excess injected carriers will fill some traps of the band tail In this case it has been demonstrated that :

$$\rightarrow$$
 I = A * V ^{γ} with γ = 1 + T_c/T

- $\gamma \ge 2$ function of the temperature
 - Evidenced in a log(I) = f(log(V)) diagram

• If
$$T_c < T_{measurement}$$
 $\gamma = 2$

University of Konstanz <u>Sarbara Terheiden</u> / Gabriel Micard

NANOPHOTO Final meeting

20th November 2008/ L-NESS, Como

(Nanophoto

PHOTOvoltaic and optoelectronic applications

PHOTOvoltaic and optoelectronic applications

i layer : Study of silane flow influence

D= SiH4/(SiH4+ H2)	SiH4 flux (sccm)	#num	Surface Xc (%)	Conductivity homogeneity	IV measurements observation
30%	20	7821	28	Not evaluated	High photogain, low dark current
30%	16	7823	27	Not evaluated	Medium photogain & dark current
30%	12	7824	41	Not evaluated	Low photogain, high dark current
50%	20	7825	36	Bad	High photogain, low dark current
50%	16	7826	27	Bad	Low photogain, high dark current
50%	12	7827	39	Bad	Low photogain, high dark current

• Samples 7821, 7825 (high silane flow)

- High photogain (1000-10000), Low conductivity (10⁻¹¹-10⁻⁹ S/cm)
 - amorphous Si dominates
- Decreasing the silane flow at the same dilution
 - Reduced photogain, increased dark conductivity
 - nc-Si dominates

University of Konstanz Barbara Terheiden / Gabriel Micard NANOPHOTO Final meeting

PHOTOvoltaic and optoelectronic applications

Ideal i layer conductivity characteristics for solar cells

- Bibliographic study establish that the best compromise between
 - Amorphous
 - Poor dark conductivity 10⁻¹¹-10⁻⁹ S/cm (high recombination)
 - High photogain :1000-10000 : very good light absorption
 - And Crystalline silicon
 - High dark conductivity 10⁻⁴-10⁻⁵ S/cm (low recombination)
 - Low photogain :1-5 : low light absorption
 - Should be nc-Si with:
 - Medium dark conductivity 10⁻⁷ S/cm
 - Medium photogain : 100
- The best samples already grown show a dark conductivity of 10⁻⁸ S/cm for a photogain around 100
 - ➔ These samples will have lower electrical performance than the recommended ones from literature

University of Konstanz Barbara Terheiden / Gabriel Micard NANOPHOTO Final meeting

PHOTOvoltaic and optoelectronic applications

Conductivity of p-type layers of series 8135-8144

- As expected the conductivity increases with doping ratio to reach a maximum of 5-6 S/cm at <u>DR 6.3%!!!</u> In the literature the optimum DR is between 0.4 and 0.8% for VHF-PECVD or HWCVD
- The conductivity on one wafer varies for a factor 3 to 6
- With the averaging the maximum is not very pronounced

NANOPHOTO Final meeting

PHOTOvoltaic and optoelectronic applications

Microsharp environmental tests on samples coming from the wafer 7665 (Si substrate, T=300°C, d=30%)

- 14 days @ 70°C and 95% Relative Humidity
- placed in dry oven @ 245°C for 14 days
- thermal shock from -35°C to 200°C for 3 days + thermal shock from -20°C and -30°C to 200°C for 3 days
- 14 days @ -40°C.

University of Konstanz Barbara Terheiden / Gabriel Micard NANOPHOTO Final meeting

PHOTOvoltaic and optoelectronic applications

Results

- No crystallinity variation after tests
- hydrogen content decrease after TT in dry oven @ 245°C for 14 days

falls below the detection limit after thermal shock from -35°C to 200°C for 3 days + thermal shock from -20°C and -30°C to 200°C for 3 days.

University of Konstanz <u>Barbara Terheiden</u> / Gabriel Micard

NANOPHOTO Final meeting

PHOTOvoltaic and optoelectronic applications

PIN-Si thin-film solar cell "Superstrate" Configuration

Back contact: Ag or Ti

n-type nc-Si 30-60 nm

intrinsic nc-Si 1-4 µm

p-type nc-Si 30-60 nm

ZnO:Al 1 μm

Glass 1 mm

University of Konstanz Barbara Terheiden / Gabriel Micard

PHOTOvoltaic and optoelectronic applications

Selection of Transparent Conductive Oxide

Requirement: TCO must withstand plasma deposition of Si layers

Results: Indium tin oxide not stable against hydrogen ZnO stable in plasma

University of Konstanz Barbara Terheiden / Gabriel Micard NANOPHOTO Final meeting

PHOTOvoltaic and optoelectronic applications

PIN solar cell global macroscopic structure elements and fabrication process

- Step 1/ pin nc-Si deposition at LNESS on glass/ZnO
- Step 2/ metal/Al evaporation (with mask)
- Step 3/ SF₆ plasma etching: removal of nc-Si between Alcontacts

University of Konstanz Barbara Terheiden / Gabriel Micard NANOPHOTO Final meeting

PHOTOvoltaic and optoelectronic applications

IV curve model: Difference to wafer solar cells

 Drift device: Carrier collection dependent on electric field between p-type and n-type layer

→ ideal diode factor = 2 (not 1)

- → diode saturation current $J_{on} \propto 1/\tau$ (not $1/\sqrt{\tau}$)
- Recombination current function of V
 - → Merten collection model

University of Konstanz Barbara Terheiden / Gabriel Micard NANOPHOTO Final meeting

PHOTOvoltaic and optoelectronic applications

Transport properties of the i-layer: Merten Model (1)

Assuming all that the diffusion is negligeable Merten Hubin Crandall and Rech have express differently the <u>collection probability</u> <u>function</u> due to differing additional approximations

Hof remarked that these 4 models lead to similar results with different relative value of μ . τ :

 $\mu^{0}\tau^{0}\big|_{\mathit{Crandall}} \div \mu^{0}\tau^{0}\big|_{\mathsf{Re}\,\mathit{ch}} \div \mu^{0}\tau^{0}\big|_{\mathit{Hubin}} \div \mu^{0}\tau^{0}\big|_{\mathit{Merten}} \approx 1 \div 2 \div 3.73 \div 4$

(Phd Hof University of Neuchatel)

→ Therefore these model are very suitable qualitatively while differing in the evaluation of μ . τ by a maximum factor of 4

University of Konstanz Barbara Terheiden / Gabriel Micard NANOPHOTO Final meeting

PHOTOvoltaic and optoelectronic applications

Transport properties of the i layer: Merten Model (2)

 $\mu_{0.\tau_{0}}$: Normalized mobility lifetime product: depend on electron and hole mobility and lifetime describes <u>quality of the i layer</u>

L: thickness of the i layer

 φ :form factor: depend on the deformation of the electric field at the interface: <u>quality of p/i and n/i interfaces (normaly between 1 and 2)</u>

 V_{bi} : build in voltage: depend on the activation energy of n and p layer :<u>doping</u> <u>efficiency of n and p layer (assumed to be around 1V)</u>

current increasing linearly in reverse bias, <u>independently from the</u> <u>parallel resistance</u> due to increased collection of generated carriers

University of Konstanz Barbara Terheiden / Gabriel Micard

PHOTOvoltaic and optoelectronic applications

Transport properties of the i-layer: Dependance of I_{photo} on L

The recombination increase with L however the generation increase also with L

→ Simulation of the absorption of the i layer varying L with *Optical* considering:

- Low roughness for all layers : 5nm
- X_c 50%

→Convolution with solar spectrum lead to I_{photo}:

University of Konstanz Sarbara Terheiden / Gabriel Micard

Fitted with very good accuracy by an empirical law: $I_{photo} = A+B*log(L+C)$

PHOTOvoltaic and optoelectronic applications

20th November 2008/ L-NESS, Como

- 🗆 🗙

PHOTOvoltaic and optoelectronic applications

First series of pin nc-Si devices

Device design

Ag/Al contact, pin Si layer thickness: 30 nm / 1 µm / 80 nm

Technological results:

Contact metal defoliates, hardly any contact to Si

Electrical results

Supralinear behaviour in reverse bias

- Can be modelized by power law > 2
 - \rightarrow SCLC(T_c correct, correct layer)
 - i-layer is contacted directly, non existing p layer

Next series

- Thicker p-type and n-type layers as well as different i-layer thicknesses
- Ti / Pd / Ag / Al contact

University of Konstanz Barbara Terheiden / Gabriel Micard

PHOTOvoltaic and optoelectronic applications

Second series of pin nc-Si devices

Device design

Ti / Pd / Ag / Al contact, *pin* Si layer thickness: 60 nm / 1 or 2 µm / 150 nm

Technological results:

Contacts OK, thickness check by transmission: 1.475 and 2.950 μm

Electrical results

- 1 µm i-layer: all cells shunted, no SCLC
- 2 µm i-layer: 4/10 not shunted

 $\mu^0\tau^0/\varphi$: improved, p-type and n-type doping OK as deduced from V_{BI} fits

 J_{0n} significantly lower than in series 1

Next series

- Keep device design
- Slower growth for higher Si layer quality, introduce p/i and n/i buffer

University of Konstanz <u>Barbara Terheiden</u> / Gabriel Micard

NANOPHOTO Final meeting

PHOTOvoltaic and optoelectronic applications

Third series of pin nc-Si devices "16 sccm" Device design

Ti / Pd / Ag / Al contact, pin Si layer thickness: 60 nm / 1 or 2 μm / 150 nm

Technological results:

Contact resistance high

Electrical results

Higher V_{OC} corresponding to lower crystalline fraction

 $\mu^0 \tau^0 / \phi$: improved further, material has higher quality

 J_{0n} significantly lower than in series 2

Shunt problems: may be due to pin holes

University of Konstanz Barbara Terheiden / Gabriel Micard NANOPHOTO Final meeting

PHOTOvoltaic and optoelectronic applications

Third series of pin nc-Si devices "3 sccm" Device design

Ti / Pd / Ag / Al contact, pin Si layer thickness: 60 nm / 1 or 2 μm / 150 nm

Technological results:

Contact resistance high

Electrical results

Lower V_{OC} corresponding to higher crystalline fraction

 $\mu^0\tau^0/\varphi$: improved further, material has higher quality

 J_{0n} significantly lower than in series 2

Shunt problems: may be due to pin holes

University of Konstanz Barbara Terheiden / Gabriel Micard NANOPHOTO Final meeting

PHOTOvoltaic and optoelectronic applications

Conclusion

- Electrical properties of i-layer and p-type layer determined
- Environmental testing on LE-PECVD Si layers carried out
- First LE-PECVD based PIN Solar cells are fabricated
- New input for further layer and interface optimization gained by in depth characterisation

University of Konstanz Barbara Terheiden / Gabriel Micard