Y POLITECNICO DI MILANO

Plasma Reactor Model

Maurizio Rondanini, Carlo Cavallotti

Dip. Chimica, Materiali e Ingegneria Chimica "G. Natta" – Politecnico di Milano

Aim and Approach

- Aim: model of LE-PECVD reactor that can link operating parameters to:
 - Local gas phase composition (ions and radical)
 - Flux of gas phase species to surface
 - Growth rate and mean surface composition
- Approach:
 - solution of Maxwell + mass conservation + momentum conservation + energy balance equations
 - Validation of model through comparison with experimental data
- Literature status: no detailed model with accurate experimental validation

Features of the Model

crysteline silicon films for

POLITECNICO DI MILANO

Model of a DC Discharge in a Magnetic Field

Plasma sustained by Ar discharge, SiH₄ and H₂ introduced in upper chamber \rightarrow Ar plasma well characterized experimentally (Langmuir probe + Hiden in situ mass spectrometer)

Plasma discharge model initially tested through simulation of Ar discharge in 2D

$$\nabla^{2}V = \frac{q_{e}}{\varepsilon} (n_{e} - n_{i})$$
Magnetic field confinement effect
$$\nabla \bullet (n_{e}\vec{v}_{e}) = R_{e}$$

$$\nabla \bullet (n_{i}\vec{v}_{i}) = R_{i}$$

$$v_{i\perp}n_{i} = -D_{i\perp}\nabla n_{i} + \frac{z_{i}em_{ij}v_{ij}}{z_{i}^{2}m^{2}\omega^{2} + m_{ij}^{2}v_{ij}^{2}} \mathbf{E}$$

$$v \bullet \nabla C_{in} = D_{in}\nabla^{2}C_{in} + R_{in}$$

POLITECNICO DI MILANO

Integration Domain

Nanophoto NANO systelline silicon films for PHOTO voltais and ostalelectronic

POLITECNICO DI MILANO

Magnetic Field Intensity and Confinement ratio

ratio between axial and radial electron diffusion coefficient

Ionization Rate Constants

Ar + el
$$\rightarrow$$
 Ar + 2el $r_j = k_j (T_e) n_e C_i \quad k_j (T_e) = \int_0^\infty \sqrt{\frac{2\varepsilon}{m_e}} f(\varepsilon, T_e) \sigma(\varepsilon) d\varepsilon$

Electron energy distribution function calculated solving the Boltzmann equation as a function of Pressure and Electric field (Daria Ricci, Istituto dei Plasmi, Mi)

Electron and Ion Mole Fractions

Comparison with experimental data

Exp data measured through Langmuir probe in front of the susceptor along the reactor radius (T. Moiseev and D. Chrastina, L-Ness, Politecnico di Milano)

POLITECNICO DI MILANO

Electron Density = Electron mole fraction x 2.4 10^{20} m⁻³

Nanophoto NANO systaline silicon

Modeling nc Silicon deposition – gas phase chemistry

 SiH_4/H_2 introduced in the upper chamber through an injection ring lonic and radical species diffusion modeled using ambipolar theory (allows decoupling from Poisson equation)

POLITECNICO DI MILANO

- Gas phase reactivity from literature + ab initio RRKM/ME estimation

- Surface reactivity partly from literature, but mostly from UNIMB calculations

(Nanophoto

$$\nabla \bullet \left(n_i \vec{v}_i \right) = R_i$$

$$v \bullet \nabla C_{in} = D_{in} \nabla^2 C_{in} + R_{in}$$

$$\mathbf{v}_{i\perp} n_i = -D_{i\perp} \nabla n_i + \frac{z_i e m_{ij} v_{ij}}{z_i^2 m^2 \omega^2 + m_{ij}^2 v_{ij}^2} \mathbf{E}$$

+ momentum balance (Navier Stokes) and energy balance (Fourier)

Assumption that the mass spectrometer perturbs the eedf in front of the orifice so that there is a volume where electronic reactions are not active. Non reactive volume fitted over exp ArH+ / H_3 + ratio measured for Ar/ H_2 plasma

(Nanophoto

Results – position B

POLITECNICO DI MILANO

NAND systelline so

Results – position C

POLITECNICO DI MILANO

Nanophoto NANO PHOTO

Model Predictions for other partners

Surface Fluxes

 \rightarrow Inputs for atomistic model of surface growth (UNIMIB) and indications for L-Ness about relation between growth rate, gas phase composition and surface quality

6 Nanophoto

NAND

Summary (from the project objectives standpoint)

- New model of plasma discharge, home made FEM code, in very good agreement with experimental data Langmuir Probe data
- New model of plasma chemistry, home made FEM code, in very good agreement for the prediction of local gas phase composition with experimental measurements
- Part of Input for simulations taken from partner UNIMIB
- Output of simulations used by UNIMIB for surface modeling and by L-Ness to interpret growth conditions
- Task 1.3 (Plasma reactor modeling in LEPECVD) and Task 1.6 (Modeling of the deposition process, with UNIMIB) fully accomplished

Conclusions (scientific standpoint)

- High electron density due to confining magnetic field
- High decomposition of Silane determined by extremely high reactivity of this system (much higher than that found in higher pressure capacitive plasmas)
- LE-PECVD, by decoupling ion flux from plasma density, allows to grow in a region characterized by an extremely high flux of SiHx and H radicals
- Increasing the hydrogen content leads to an increase of the H/Si flux to the surface (higher atomic hydrogen flux, increase of relative abundance of slightly hydrogenated SiHx radicals
- Surprisingly, surface mostly covered by H during growth, high sticking on H covered surface allows high growth rates anyway

