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Aim and Approach

- Aim: model of LE-PECVD reactor that can link operating 
parameters to:

- Local gas phase composition (ions and radical)

- Flux of gas phase species to surface

- Growth rate and mean surface composition

- Approach: 

- solution of Maxwell + mass conservation + momentum 
conservation + energy balance equations

- Validation of model through comparison with 
experimental data

- Literature status: no detailed model with accurate 
experimental validation 
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Features of the Model

2 D plasma discharge model

Gas phase and surface 

kinetic mechanism of elementary reactions

2 D model of gas phase and 
surface chemistry model

2D Electronic density, electric field

Reaction rates
UniMib

Literature 
+ Polimi

Gas phase 
composition

Ions + radicals

Surface fluxes

Growth Rates
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Plasma sustained by Ar discharge, SiH4 and H2 introduced in upper 
chamber Ar plasma well characterized experimentally (Langmuir probe 
+ Hiden in situ mass spectrometer)

Plasma discharge model initially tested through simulation of Ar discharge 
in 2D
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Model of a DC Discharge in a Magnetic Field 
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Integration Domain
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Magnetic Field Intensity and  Confinement ratio

ratio between axial and radial electron diffusion coefficient
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Ionization  Rate Constants

Kinetic constant fitted as:
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Electron energy distribution function calculated solving the Boltzmann equation 
as a function of Pressure and Electric field (Daria Ricci, Istituto dei Plasmi, Mi)

Ar + el Ar+ + 2el ( )j j e e ir k T n C= ( ) ( ) ( )
0

2 ,j e e
e

k T f T d
m
ε ε σ ε ε

∞
= ∫



Konstanz – 31/01/08

Electron and Ion Mole Fractions

Electron Density = Electron mole fraction x 2.4 1020 m-3
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Comparison with experimental data
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Electron Density = Electron mole fraction x 2.4 1020 m-3

Exp data measured through Langmuir probe in front of the susceptor along the reactor 
radius (T. Moiseev and D. Chrastina, L-Ness, Politecnico di Milano)



Konstanz – 31/01/08

Modeling nc Silicon deposition – gas phase chemistry

SiH4/H2 introduced in the upper chamber through an injection ring
Ionic and radical species diffusion modeled using ambipolar theory (allows 
decoupling from Poisson equation)
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- Gas phase reactivity from 
literature + ab initio RRKM/ME 
estimation
- Surface reactivity partly from 
literature, but mostly from 
UNIMB calculations
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Chemistry Model
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+ momentum balance (Navier 
Stokes) and energy balance 
(Fourier)

Pos A B C

SiH3

Assumption that the mass spectrometer 
perturbs the eedf in front of the orifice so that 
there is a volume where electronic reactions 
are not active. Non reactive volume fitted over 
exp ArH+ / H3+ ratio measured for Ar/H2 plasma



Konstanz – 31/01/08

Results – position B
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Results – position C
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Model Predictions for other partners

Growth Rate

Inputs for atomistic model of surface growth (UNIMIB) and indications for L-Ness 
about relation between growth rate, gas phase composition and surface quality
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Summary (from the project objectives standpoint) 

• New model of plasma discharge, home made FEM code, in very good 

agreement with experimental data Langmuir Probe data

• New model of plasma chemistry, home made FEM code, in very good 

agreement for the prediction of local gas phase composition with 

experimental measurements

• Part of Input for simulations taken from partner UNIMIB

• Output of simulations used by UNIMIB for surface modeling and by L-Ness 

to interpret growth conditions

• Task 1.3 (Plasma reactor modeling in LEPECVD) and Task 1.6 (Modeling of the 

deposition process, with UNIMIB) fully accomplished
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Conclusions (scientific standpoint)

• High electron density due to confining magnetic field

• High decomposition of Silane determined by extremely high reactivity of 

this system (much higher than that found in higher pressure capacitive 

plasmas)

• LE-PECVD, by decoupling ion flux from plasma density, allows to grow in a 

region characterized by an extremely high flux of SiHx and H radicals

• Increasing the hydrogen content leads to an increase of the H/Si flux to the 

surface (higher atomic hydrogen flux, increase of relative abundance of 

slightly hydrogenated SiHx radicals

• Surprisingly, surface mostly covered by H during growth, high sticking on H 

covered surface allows high growth rates anyway
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