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Gas phase presursor: SiH,
Reactive plasma -> radicals, ions
¢ Several substrates: Si, glass, oxide
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We learned with POLIMI that the
surface is almost fully hydrogenated

After performing Car-Parrinello MD
simulations[1-3], we now know that
SiH; sticking on Si(001)(1x2):H is
negligible, while SiH, is unitary

1) S. Cereda, M.Ceriotti, F.Montalenti, M. Bernasconi, L.Miglio PRB 75, 235311 (2007)
2) S. Cereda, PHD Thesis, University of Milano-Bicocca, December 2007
3) S. Cereda, F. Zipoli, M. Bernasconi, L. Miglio, and F. Montalenti, PRL 100, 046105 (2008)




(p = 100 o/o)

adsorbs on db at Si(100)(2x1):H
-> SiHj; (a)

SiH; needs a db!

SiH,

SiH; (9) + H (@) -> SiH, (9)+ db  direct abstraction (p ~ 60 % *)
SiH; (9) + db
*S. Cereda, M.Ceriotti, F.Montalenti, M. Bernasconi, L.Miglio PRB 75, 235311 (2007) °




SiH, does not!
SiH, adsorbs on Si(100)(2x1):H

S. Cereda, PHD Thesis, University of Milano-Bicocca (2007) 6




And it is pot epitaxial

What is the barrier for incorporation into
crystalline sites (DFT needed)?




The adsorbates are completely motionless
on fully Si(001)(2x1):H
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Role of impinging atomic hydrogen

Totally motionless species (E, > 2 eV)

r

* Impinging Hat 0.1 eV
* Substrate 200 °C
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e Car-Parrinello MD simulations
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S. Cereda, F.Zipoli, M. Bernasconi, L.Miglio, F. Montalenti, Phys. Rev. Lett. (2008,)
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Processes induced by H atoms hitting a SiH; |

adsorbed on a db

4 H abstraction from \

[ r'ecoil] neighbouring dimers
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Dramatic changes in the kinetic barriers
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Incorportation after etching: Ein=1.0 eV

4 )
200 °C 7, = ieEi”‘BT = 4.5ms

300 °C 7.~ 0.1ms
\_

If the average time between subsequent atom landing at a given
site is tdep , Then the necessary condition to be satisfied in order to
obtain crystalline growth is:

T << Ty,

If there is hydrogen available in the gas phase, lowering the
incorporation barrier, formation of crystalline sites is possible

S. Cereda, F.Zipoli, M. Bernasconi, L.Miglio, F. Montalenti, Phys. Rev. Lett. (2008,)




From atomic-scale mechanisms to film
growth: Kinetic Monte Carlo simulations
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Si substrate

Cartoon is in 141D, the real model considers the diamond lattice in 3D




Two families of processes considered, each
with its own time constant. At each KMC
step I consider the mechanism with the
correct statistical weight (fast processes
occur firstl)

Si substrate

Cartoon is in 141D, the real model considers the diamond lattice in 3D




Family I: Deposition of H, SiH,, or SiH;;
time constants given by the deposition
fluxes (ML/s) as given by the POLIMI
model, based on experimental ®.,,, and @,

O 00000000
”"““‘ Si substrate
000000000

Species-dependent adsorption probabilities controlled via sticking
coefficients, provided by our Car-Parrinello MD simulations. Possible

adsorption site picked randomly.




! Family IT: Incorporation processes for
adsorbed radicals (remember that the initial
site is the same)

Si substrate

Incorporation barrier computed by DFT. Barrier = 2.6 eV
(never surmounted), unless ...




! Family IT: Incorporation processes for

adsorbed radicals (remember that the initial
site is the same)

Si substrate
000000000

a hydrogen hits the adsorbed radical removing one hydrogen with the
probability computed by Car-Parrinello MD simulations. In this case the
barrier is lowered to 1eV, and it is possible to surmount it. The sequence
leading to creation of a new crystalline site is therefore ...




! I) SiH, or SiH; is successfully adsorbed

Si substrate




! IT) H from the gas phase hits the adsorbed

radical and transforms it into SiH2
O

Si substrate
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ITT) SiH, incorporates by surmounting a
barrier of 1 eV
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! IV) If, before incorporating, new
neighboring radicals are adsorbed, we
declare this site irreversibly amorphous

Si substrate

a=amorphous

Si substrate




By simulating the deposition of several
layers WITHOUT WORRYING ABOUT THE
EFFECTS OF SITES BECOMING MORE
AND MORE AMORPHOUS ...

APPLIED PHYSICS LETTERS 93, 061902 (2008)

Physical mechanisms of hydrogen-enhanced onset of epitaxial growth
of silicon by plasma-enhanced chemical vapor deposition

X. Tan and G. W. Yang®




Good agreement
with exp. is

found in terms

of crystallinity,
but the morphology : .
is rather random (@ ()
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FIG. 2. (Color online) Surface morphologies of the silicon film's structure
growing upon PECVD at various temperatures: {a) 75 K, with H, dilution,
(b) 250 K. with H, dilution. {c) 475 K, with H, dilution. and (d} 475 K,
without H; dilution. Black. red. greem, blue, and cyan dots represent ad-
sorbed species L I1, 1ML 1V, and 'V, respectively.
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Suppose we have this configuration.
The situation is now very different from
the one considered in the DFT calculations!
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1) It does not make sense to create one
crystalline site, in an amorphous
environment

2) The barrier for crystallization must be
higher in an amorphous environemnt




We count the number N of “"bad supporting”
neighbors, and we change the incorporation
barrier to

E. =1eV +NxAE

The additional barrier is used as a free
parameter to fit (0.21eV) the experiments
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f If this higher barrier is surmounted, then the site
occupied by the radical and the neighboring
amorphous ones are all transformed to crystalline
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Crystallinity and microstructure in PECVD-grown Si films: a
simple atomic-scale model validated by experiments
P. L. Novikov."* A. Le Donne,! S. Cereda.!*T Leo Miglio,! S.
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(Results: hydrogen promotes crystallinity

Crystallinity (%)
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Results: high T and/or low silane fluxes
promote crystallinity
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Results: columnar structures, Typlcal of nc
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Latest results: application to non-crystalline
substrates.

Flux-dependent non-crystalline buffer layer




Raman

spectroscopy

250°C, d=30%

Kinetic Monte
Carlo

310°C,
d=30%
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Yellow= non-crystalline substrate
Higher T in KMC: buffer layer too thick to be simulated in experiments




Conclusion ..... it worksll

@®H SiH, ‘ SiH; Deposited species

L]

needs to be hit by Bad environment, Nice environment,
H to crystallize difficult crystallization  easy crystallization

‘ Si crystalline O Si amorphous




" T should consider all processes contributing
to the average H coverage. This prevents
simulation of a significant amount of layers

®H

SiH; silane desorption via

desorption Elay-Rideal mechanism

adsorption / db migration
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Since we know that the hydrogen coverage
is very high, what do I loose if I force
each surface site to be always
hydrogenated? Let us look at adsorption ...

SiH, ‘ >iH;

100% on both 100% on dB
dB and clean 0% on clean

”"““‘ Si substrate
000000000

To overcome the problem it is sufficient to assign to SiH; a probability
corresponding to the average db coverage (0.1 in the following)




The problem could be incorporation, since
on clean surfaces radicals can incorporate
without the etchant action of hydrogen
[Ceriotti et al, submitted]. But the

probability of having "clean regions” is very
low

SiH,

Si substrate




TABLE I: Deposition rates of SiHs, SiHs and H in monolayers per second. as a function of the

silane flux dgyy, and the dilution ratio d, based on the gas-phase model of Ref.'®. Values are given

only for the set of parameters explored in this work.

Dsin, Species d
[ scem | 30% 50% 100%
SiH, 16.1 19.4 _
12 SiHz 6.4 7.8 -
H 34.9 32.2 -
SiHg 15.7 23.3 271
16 SiHs 7.5 9.3 10.8
H 38.6 36.2 31.0
SiHg 20.6 26.4 -
20 SiHs 8.2 10.6 -
H 41.3 39.2 -
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