

NANDerystalline silicon films for

PHOTOvoltaic and optoelectronic applications

Final Nanophoto Meeting Introductory notes

Sergio Pizzini Project Coordinator

Como,21-22 November 2008

The primary aim of this research project was to develop computational tools capable of assisting the design of a new nc-Si growth process with a Low Energy variant of a Plasma Enhanced Chemical Vapour Deposition (LEPECVD) reactor, addressed at the deposition of high quality nc-Si films for both photovoltaic and optoelectronic applications.

The dissemination and the possible industrial transfer of the results was the ultimate goal

NANDerystalline silicon films for

PHOTOvoltaic and optoelectronic applications

by means of:

- the **modelling** of the LEPECVD reactor, looking at the reactor fluidodynamics and at the kinetics of the chemical reactions in the plasma phase and at the surface.
- the **modelling**, **design and optimisation** of the film growth process, addressed at the identification of a set of critical parameters for the optimisation of the structural properties of the material (shape, size, size distribution and mutual nanocrystals orientation
- the **modelling** of the micro/nano structure of the nc-Si films, looking at the effect of the nc-Si/a-Si ratio and of the local strain on the electronic properties
- the **growth of nc-Si films** and their structural, electrical, optoelectronic and environmantal characterization
- The fabrication of a pin device to be used as prototype PV cell and electroluminescent device

NANDerystalline silicon films for

PHOTOvoltaic and optoelectronic applications

Achievements

- The set up of a full 2D plasma reactor modeling
- The development of atomistic base- modelling of the crystalline vs amorphous growth
- The set-up of a plasma diagnostic system
- The development of novel characterization techniques