POLITECNICO DI MILANO

Nanophoto final meeting Summary of WP2: nc-Si deposition

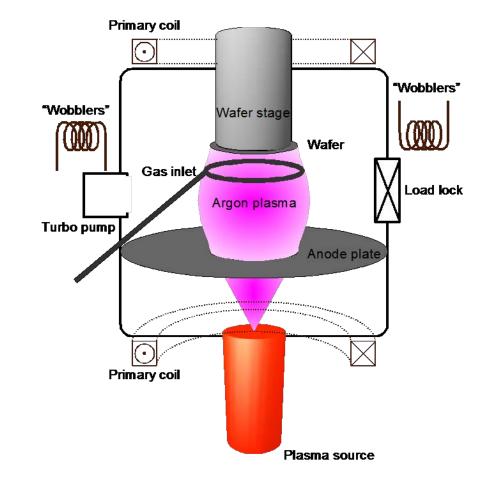
Giovanni Isella, Daniel Chrastina, Tamara Moiseev, Davide Colombo and Hans von Känel LNESS – Politecnico di Milano - Polo Regionale di Como Via Anzani 42 Como - Italy

Outline

POLITECNICO DI MILANO

Low-energy plasma-enhanced CVD

working principle and prior knowledge


LEPECVD for nc-Si deposition motivations and requirements

NANOPHOTO WP2 Objectives

- Optimization of film microstructure Crystalline/amorphous ratio, grain size
- Doping studies Dopant incorporation in the nc-Si layer
- nc-Si growth for device optimization Application of the optimized growth procedures to device fabrication
- Plasma diagnostics Plasma diagnostic by mass spectrometry and Langmuir probe

Nanophoto final meeting 21th November 2008 Como

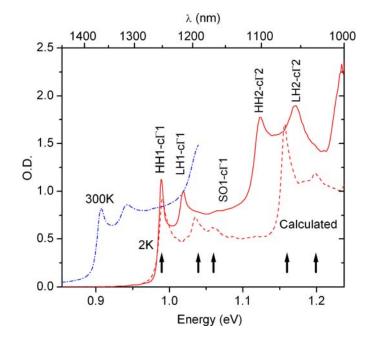
Low-energy plasma-enhanced CVD

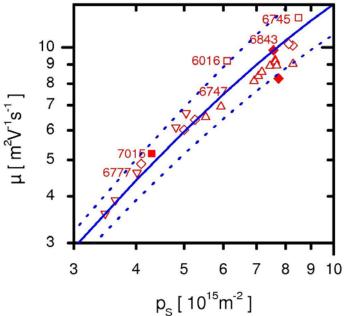
POLITECNICO DI MILANO

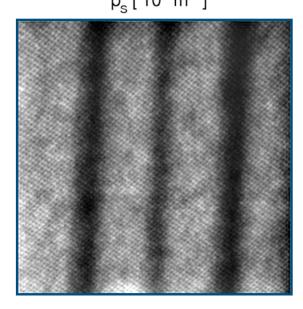
Nanophoto final meeting 21th November 2008 Como

3 Working principle & prior knowledge

- Electrons emitted by a hot filament sustain a DC plasma
 - Low (~10eV) ion energy
 - Discharge confined by a magnetic field (~1mT)
 - **High deposition rates** 5-10nm/s in "High rate" regime


LEPECVD for SiGe heterestructures deposition


POLITECNICO DI MILANO



Record mobility for p-type carrier in Ge quantum wells

SiGe superlattices with excellent structural/optical properties

Nanophoto final meeting 21th November 2008 Como

Working principle & prior knowledge

Prior knowledge of the LEPECVD plasma

POLITECNICO DI MILANO

A few experimental results

Mass spectrometry for Ar:H₂ plasma: **ArH**⁺ and **H**₃⁺ most abundant species

A (quite pictorial) educated guess

Ar **ion bombardment** removes the H atoms saturating the Si dangling-bonds

High growth rates

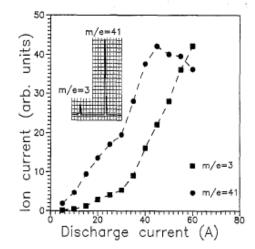
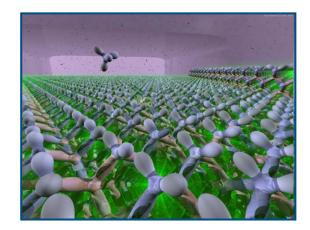



Fig. 4. The current of positively charged ions as a function of the discharge current. The inset shows the ion spectrum at a discharge current of 20 A.

N. Korner et al. Surface and Coatings Technology 76-77, 731 (1995)

Como

Nanophoto final meeting 21th November 2008

> Working principle & prior knowledge

nc-Si deposition by LEPECVD

POLITECNICO DI MILANO

Nanophoto final meeting 21th November 2008 Como

6

Motivations and objectives

Motivations

Low substrate temperature

High deposition rate 5-10nm/s for epitaxial material

Objectives

Achieveing the "right" microstructure

Dopant incorporation

Optimized procedure for device fabrication

Plasma monitoring

nc-Si deposition by LEPECVD

POLITECNICO DI MILANO

A wide spectrum research

Approx 120 depositions performed on five different						
substrates:						
Si(100)	SiO ₂ /Si(100)	glass				
ITO/glass	ZnO/glass	-				

Varied growth parameters:

```
SiH<sub>4</sub> dilution (%): [SiH_4]
[H<sub>2</sub>]+ [SiH<sub>4</sub>]
```

SiH₄ flux: 0.5 to 20sccm

Plasma density (through the confining magnetic field)

Substrate temperature: 200-300°C

Nanophoto final meeting 21th November 2008 Como

7

Film adhesion

POLITECNICO DI MILANO

The film is **not sticking**! Extensive **flaking** due to internal stress

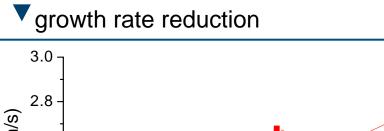
fas 3

Under conditions developed for epitaxial Si deposition

Adhesion is influenced Substrate **type** and **temperature** Strong influence of the **plasma density** 0.6mT 0.5mT

dd

7918


Nanophoto final meeting 21th November 2008 Como

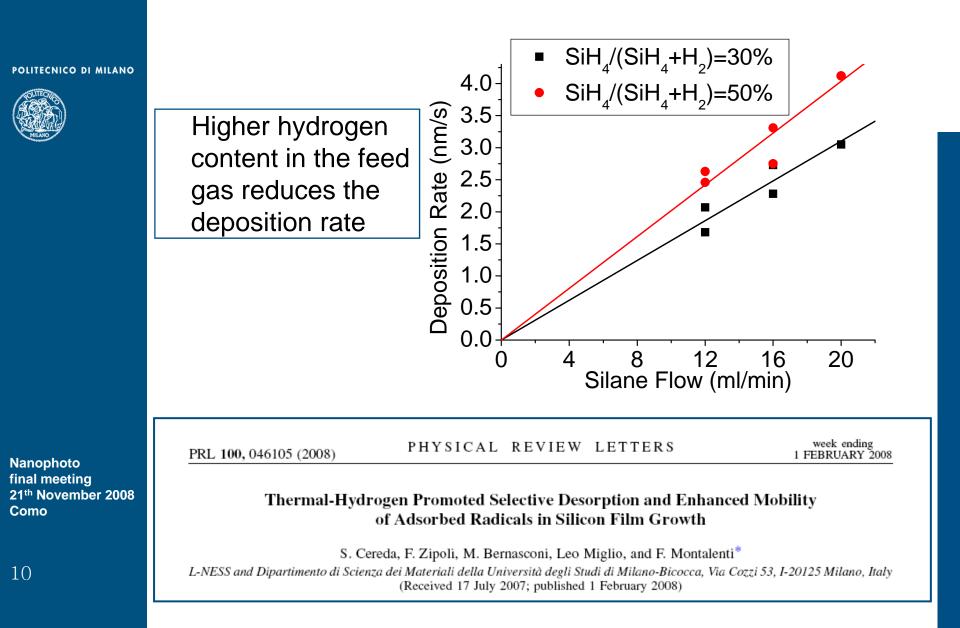
8

Film adhesion: role of the confining magnetic field

Reduction of the confining magnetic field

improved film adhesion

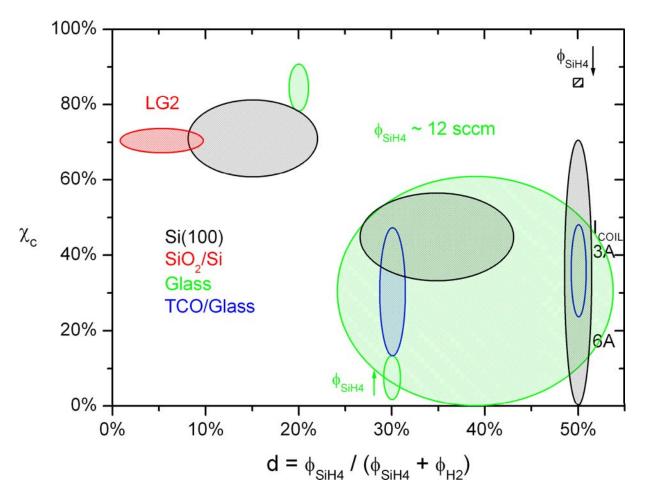
Deposition Rate (nm/s) 2.6 2.4 2.2 Silane flow 12sccm D=30% 2.0 1.8 5.0 5.5 6.0 6.5 7.0 4.5 Primary Coils Current (A) Confining field of 0.5mT (5A current) ensures a sufficiently **good adhesion** for all the substrates considered


POLITECNICO DI MILANO

Nanophoto final meeting 21th November 2008 Como

9

"H-etching" of nc-Si film

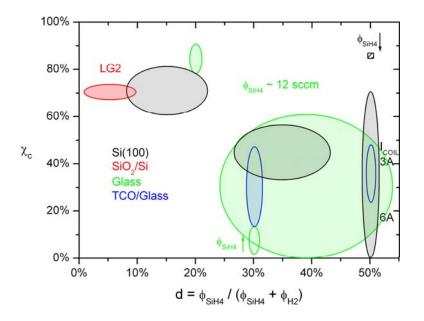

Crystalline/amorphous fraction optimization

POLITECNICO DI MILANO

11

Crystalline/amorphous fraction optimization

POLITECNICO DI MILANO

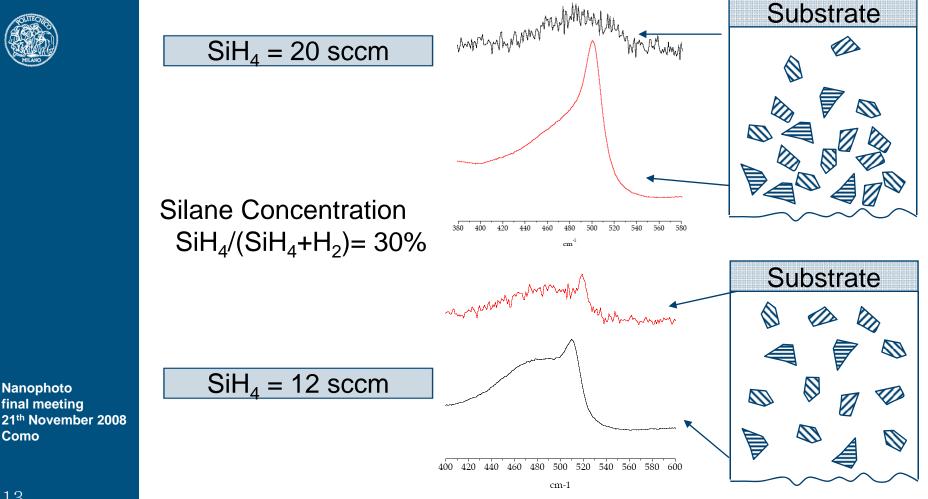


Great variability of the χ_c especially around 30-40%

The "transition type" nc-Si is obtained at d value much higher than in radio-frequency PECVD for all substrate type

,

The specific character of the plasma might play a relevant role


Nanophoto final meeting 21th November 2008 Como

12

Silane flow and uniformity in the growth direction

POLITECNICO DI MILANO

Raman Spectra by A. Le Donne UNIMIB

13

Como

Nanophoto

final meeting

WP2- Task 1 Optimization of film microstructure

POLITECNICO DI MILANO

Process window to obtain "transition type" nc-Si SiH₄ dilution $\approx 30\%$ SiH₄ flux ≈ 12 sccm Confining field ≈ 0.5 mT (electron density 10^{16} m⁻³)

- Good adhesion on all substrate investigated
- Good uniformity in the growth direction
- Bad "in plane" uniformity

Nanophoto final meeting 21th November 2008 Como

Doping of nc-Si layer

Requirements for p-type layer in thin film Si solar cell

Thin (30nm) and highly conductive

- High dopant incorporation
- II High dopant activation

III High crystallinity

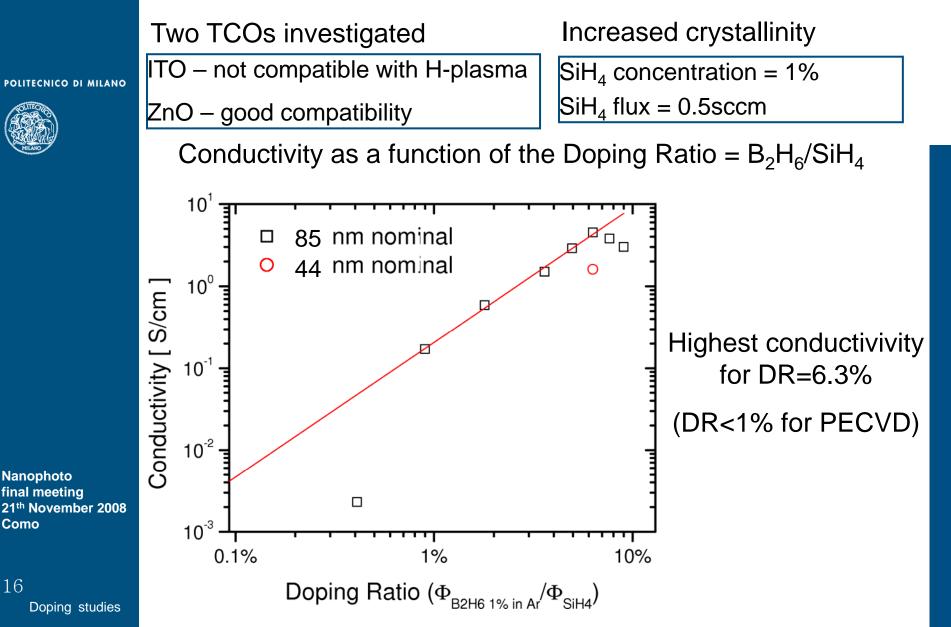
Things are made more complex by ...

I incorporation does not depend monotonically on the dopant concentration in the feed gas

II the low substrate temperature does not favour activation

III Boron favours amorphization

POLITECNICO DI MILANO



Nanophoto final meeting 21th November 2008 Como

Doping of nc-Si layer : p-type layer

Como

16

Doping of nc-Si layer : n-type layer

Less critical than p-type

I Not necessarily thin

II High crystallinity

III Needs to be grown on the **absorbing layer** (crystallinity around 40-50%)

		n-type layer deposited in a ferent reactor				_
		Sample	D	R	σ _{RT} [S.cm ⁻¹]	
	Absor	8151 / 56404	2.	0%	0.008	
Nanophoto	ор	8152 / 56405	5.	0%	0.01	
final meeting 21 th November 2008 Como		8153 / 56406	1.	0%	0.02	
17	Substrate:glass without TCO for electrical measurements				glass	-
Doping studies						

POLITECNICO DI MILANO

WP2- Task 2 Doping studies

p-type layer

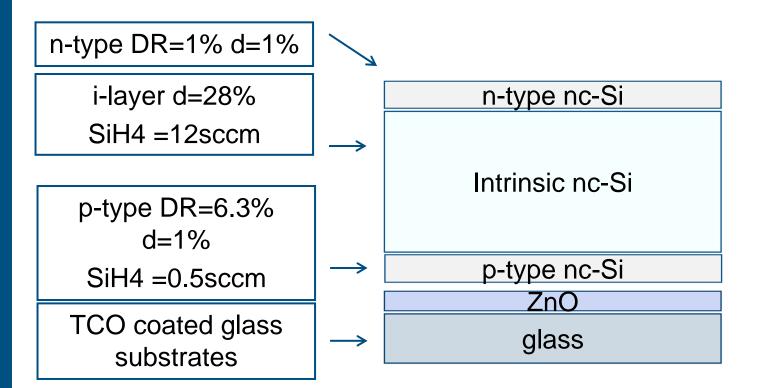
POLITECNICO DI MILANO

State-of-the-art conductivity obtained

Conductivity dependence on the doping ratio still under investigation

n-type layer

- Conductivity sufficient for back-side contact
- Higher phosphine concentration in the doping mixture might be required for further improvement


Nanophoto final meeting 21th November 2008 Como

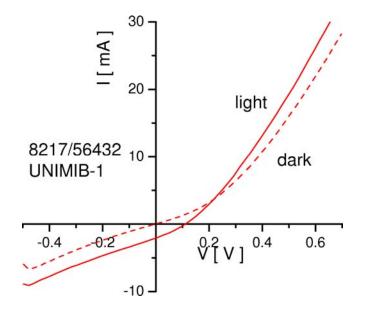
nc-Si growth for device optimization

Putting all the pieces together ...

POLITECNICO DI MILANO

Nanophoto final meeting 21th November 2008 Como

19 Nc-Si growth for device optimization The result is ...


nc-Si growth for device optimization

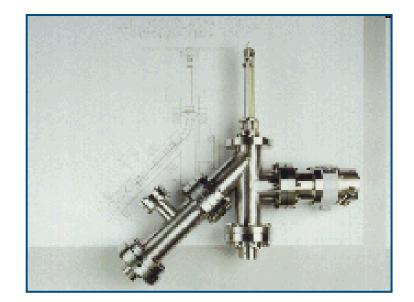
... much worse than the sum of the different components!

POLITECNICO DI MILANO

Nanophoto final meeting 21th November 2008 Como

Poor photovoltaic performances:

•Low parallel and high series resistance related to fabrication issues


Non optimized doped/undoped interfaces

•Recombination centers in the absorbing layer

Plasma Monitoring: Mass spectrometry and Langmuir probe measurements

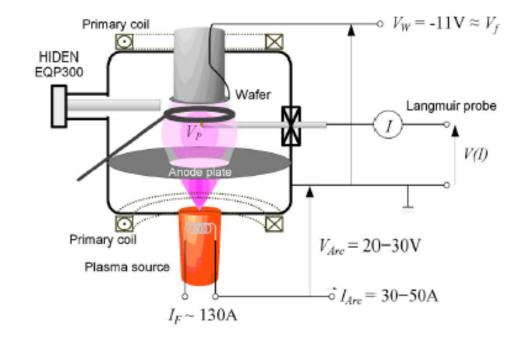
POLITECNICO DI MILANO

EQP 300 form Hiden Analytics

Mass/energy analyzer for ions and neutrals

EQP300 specially designed to:

Nanophoto final meeting 21th November 2008 Como


21 Plasma Monitoring monitor a DC plasma avoiding damage by the **1kW power** of the discharge

perform measurements at **different** radial **position** in the reactor

Plasma Monitoring: Mass spectrometry and Langmuir probe measurements

POLITECNICO DI MILANO

Energy integrated ion density measured in secondary ions mass spectroscopy (SIMS) mode

Nanophoto final meeting 21th November 2008 Como

22 Plasma Monitoring **Neutral density** measured in threshold ionization mass spectroscopy (**TIMS**) mode

Electron and ion current and densities measured by Langmuir probe

NANOPHOTO WP2 Objectives

POLITECNICO DI MILANO

Optimization of film microstructure Crystalline/amorphous ratio, grain size

++

Doping studies Dopant incorporation in the nc-Si layer

nc-Si growth for device fabrication

Application of the optimized growth procedures to device fabrication

Nanophoto final meeting 21th November 2008 Como

Plasma diagnostics

Plasma diagnostic by mass spectrometry and Langmuir probe