Presentation at EDS2008 Conference, in Poitiers, France, September 14-19 2008

Structural, Electrical and Optolectronic Properties of Hydrogenated nc-Si

Anna Cavallini

PHOdS LAB

Department of Physics ,University of Bologna, and CNISM, I 40127 Bologna, Italy.

WARE PAUL CA

Coauthors

- D Cavalcoli, M Rossi, A Tomasi, F Detto
 - PHOdS LAB Department of Physics, University of Bologna, and CNISM, Bologna, Italy.
- B. Pichaud, M. Texier,
 - TECSEN, UMR 6122 CNRS, Université Paul Cézanne, Marseille, France
- A. Le Donne, S. Binetti, M. Acciari, S. Pizzini,
- F Montalenti, P Novikov, L Miglio
- S. Sanguinetti, E. Grilli, E. Poliani, M.Guzzi,
 - Dept. of Material Science University of Milano-Bicocca, Milano, Italy.
- G. Micard, G. Hahn,
 - University of Konstanz, Faculty of Sciences, Department of Physics, Konstanz, Germany.
- D.Chrastina, G Isella,
 - L-NESS, Physics Dept Politecnico di Milano, Polo Regionale di Como, Como, Italy.

Advantages

low deposition temperatures

small material consumption

Higher resistance to light induced degradation phenomena with respect to a-Si:H

natural surface texturing

good match with solar spectrum

Why nc-Si:H?

Multi-phase: Si ncs in a-Si:H matrix

Disadvantages

low efficiency (<~13%)

Light induced degradation?

Materials properties mostly unknown

AIMS

Correlation between growth parameter and material properties

Optimization of material properties for PV applications

Outline

• Materials

- UNDOPED nc-Si:H
- Results
 - Structural Characterization
 - Stress measurements and transmission electron microscopy (TEM)
 - Atomic Force Microscopy
 - XRD, Raman spectroscopy, and FTIR
 - Electrical characterization
 - C-AFM
 - Conductivity vs T
 - Optoelectronic characterization
 - SPV (Surface Photovoltage Spectroscopy)
 - Photoluminescence measurements and Quantum confinement studies
- Conclusions
 - Correlation between growth parameters and material properties
- New Results on DOPED nc-Si:H
- Conclusions

Materials

nc-Si:H grown by

Low Energy Plasma Enhanced Chemical Vapour Deposition (LEPECVD)

UNDOPED

Sample set	d [%]	Х _с [%]	Substrate	Ts[°C]	t[µm]	
Series I	1 ÷ 20	65 ÷ 70	SiO ₂ /Si	208 ÷ 280	1.5 ÷ 1.7	
Series II	1 ÷ 60	10 ÷ 50	Si	280	1÷2	
Series III	20 ÷ 70	13 ÷ 80	Glass	250	1÷4	
Series IV	30 ÷ 50	10 ÷ 50	ZnO/glass	230	1÷4	
Series V	30 ÷ 50	10 ÷ 50	ITO/glass	230	1÷4	

d = dilution factor = Φ (SiH₄)/ [Φ (SiH₄) + Φ (H₂)]

X_c crystal fraction determined by RAMAN spectroscopy,

t sample thickness

NANDcrystalline silicon films for

Outline

- o Materials
 - UNDOPED nc-Si:H
- Results
 - Structural Characterization
 - Stress measurements and transmission electron microscopy (TEM)
 - Atomic Force Microscopy
 - XRD, Raman spectroscopy, and FTIR
 - Electrical characterization
 - S C-A\FI∕I
 - Conductivity vs T
 - Optoelectronic characterization
 - SPV (Surface Photovoltage Spectroscopy)
 - Photoluminescence measurements and Quantum confinement studies
- Conclusions
 - Correlation between growth parameters and material properties
- New Results on DOPED nc-Si:H
- Conclusions

Bright fieldTEM micrograph & corresponding SAED pattern

HR-TEM micrographs Left : under-focalized; Right : No defocus

Im2np Institut Matériaux Microélectronique Nanosciences de Provence UMR 6242 CNRS, Universités Paul Cézanne, Provence et Sud Toulon-Var

Nanometric size domains are observed

Domains are constituted by misoriented nano-crystals

Various nanocrystal sizes (between 4 to 20 nm)

Series I Cross-section view observations

- Columnar growth
- Fringe contrasts : twinning within the columns

Bright field TEM micrographs (low magnification)

Series II <u>Cross-section view</u> observations

Superficial part of the layer :

Transition from crystalline to amorphous structure.

The elongated columns become isolated small nanocrystals

NANOPHOTO Annual meeting - Aix-en-Provence, 27/06/2008

Central part of the nc-Si layer

 Institut Matériaux Microélectronique Nanosciences de Provence

 UMR 6242 CNRS, Universités Paul Cézanne, Provence et Sud Toulon-Var

LNRADERIÉ PAUL CEZANNE Alte-Narkalite III

Crystallinty seems to vary depending on the investigated area : χ_c low close to the ZnO film vs χ_c higher after only a few tens of nanometres

Conclusions:

- RMS increases vs film thickness
- RMS is independent on crystallinity

AFM analyses: 12 maps in different areas of the samples 1X1 μ m FFT of the maps to remove noise and artifacts (tilting, piezo drift, acustic noise) The error bars are the standard deviation of the RMS roughness values on the different maps

Roughness-simulation

The evolution of the roughness vs thickness simulated by a simple atomistic Kinetic Monte Carlo model [1] including hydrogen-coverage and crystallinity dependent impact-following events. Activated diffusion, instead, is assumed to be frozen [2].

Results

Experimental results are nicely recovered by assuming a crystallinity of 50% and an average hydrogen coverage of 5-7%.

[1] F. Gemma & F. Montalenti, in preparation[2] S. Cereda et al., Phys. Rev. Lett. 100, 046105 (2008)].

P C

4.9 nm

_0.0 nm

Σ 0.00

59 CT

.0.30

Structural characterization: XRD results

Preferred growth direction <111> for series I, II and III

(220)

(111)

Average grain dimension L

from tens of nm at high silane dilution (d <30%) to few nm (3-5nm) at low silane dilution (d>30 %)

METHODS:

X ray Diffraction (XRD): PANalytical X'PERT-PRO diffractometer (Bragg-Brentano geometry, θ-θ scans); accelerating voltage 40 kV/current 40 mA used to produce a Cu-Ka radiation (1.5406 Å).

H content determination by FTIR

[H] map for the sample #7653 (d=10%)

relatively low (around 2.5%) H concentration in all samples

Obtained from the values of integrated absorption of the Si-H waggingrocking mode at 640 cm⁻¹ [Y. He, C. Yin, L. Wang, X. Liu, G.H. Hu, J.App.Phys. 75 (1994) 797]

Crystal fraction Xc by Raman Analyses (comparison with Kinetic Monte Carlo modeling [1])

• good "crystallinity uniformity" of the samples up to d (dilution factors) = 20 %

 large deviations from uniformity at d>20%:

[1] P. Novikov, F. Montalenti, and L. Miglio, in preparation.

Outline

- o Materials
 - UNDOPED nc-Si:H
- o Results
 - Structural Characterization
 - Stress measurements and transmission electron microscopy (TEM)
 - Atomic Force Microscopy
 - XRD, Raman spectroscopy, and FTIR
 - Electrical characterization
 - C-AFM
 - Conductivity vs T
 - Optoelectronic characterization
 - SPV (Surface Photovoltage Spectroscopy)
 - Photoluminescence measurements and Quantum confinement studies

Conclusions

- Correlation between growth parameters and material properties
- New Results on DOPED nc-Si:H
- Conclusions

C-AFM The method

The probe scans the sample surface in contact mode.

A feedback loop keeps the cantilever deflection constant by varying the tipsample distance. At the same time a bias potential (3V) is applied to the probe and the electrical current is measured. Topography and current maps are obtained simultaneously

C-AFM Transport Mechanisms in nc-Si:H

The localization of the trasport properties in the material is still an open problem. *Route 1* and *Route 2* represent two possibilities supported by experimental data [1,2].

)7

[**Route 1**, I.Balberg et al., Phys. Rev. B 71 (2 5)] [**Route 2**, A.Fejfar et al., J. Non-Cryst. Solids 266-269 (2

All the intrinsic samples (grown on Si, Glass,...) show the same behavior

Samples grown on ITO/glass, Xc 5 % dilution 4 %

Electrical conduction. Conclusions

- The conduction is localized within the <u>nanocrystallites</u>, the proposed mechanism is transport via the crystallites [2].
- The amorphous tissue surrounding the nanocrystals is non conductive E_G(a-Si:H) > E_G(c-Si).
- Intrinsic nc-Si:H
 - the conductive nanocrystals are mainly located in the "hills" of the structure.
- <u>Doped nc-Si:H</u>
 - the conductive nanocrystals are mainly, but not only, located in the "valley" of the structure.

[Route 1, I.Balberg et al., Phys. Rev. B 71 (2 5)] [Route 2, A.Fejfar et al., J. Non-Cryst. Solids 266-269 (2)]

Conductivity. Results

Dark conductivity measurements in planar configuration

- Low dark conductivity values obtained for all the sample series ≈ 10⁻⁷ Ohm⁻¹cm⁻¹ (good candidate as ilayer in for p-i-n cells)
- Low photosensitivity ≈ 2 for sample series I and II
- High photosensitivity ≈ 100 for the samples series III (grown on glass), promising for PV applications.

Conductivity measurement setup

Universität Konstanz

Using a Keithley 617 electrometer in V source mode, we can measure resistance up to $1 T\Omega$ or conductivity down to $1E-9 \rightarrow 1E-10 \text{ S/cm}$ (film thickness)

Rectangular contact: 10 *3 mm Electrode distance : 0.5 mm Structure Ti(50nm)/Pd(50nm)/Ag(1µm) Annealed for 90 min at 180°C in Ar, Ar/H

Temperature can be swept between 80 and 340 K Voltage can be swept between -105 and +105 V

Conductivity. Low dilution samples

- Activation energies consistent with intrinsic or non intentionally doped µc-Si:H with high crystalline fraction
- both σ and E_a significantly changes with doping
 - → no Fermi level pinning as reported for a-Si

High T	6733 I d:1.96%	7578 I d:6%	7446 N doped	7445N doped
E _a (eV)	0.52 ± 0.02	0.50 ± 0.02	0.20 ± 0.02	0.12 ± 0.02
$σ_{\rm RT}$ (Ω ⁻¹ .cm ⁻¹)	3.2 E-7	1.4 E-6	6.0 E-4	2.6 E-3

Ideal conductivity characteristics for solar cells

Universität Konstanz

- Bibliographic study establish that the best compromise between
 - Amorphous
 - Poor dark conductivity 10⁻¹¹-10⁻⁹ S/cm (high recombination)
 - High photogain :1000-10000 : very good light absorption
 - And Crystalline silicon
 - High dark conductivity 10⁻⁴-10⁻⁵ S/cm (low recombination)
 - Low photogain :1-5 : low light absorption
 - Should be nc-Si with:
 - Medium dark conductivity 10⁻⁷ S/cm
 - Medium photogain : 100

so the best samples for PV aplications should be close to the a-nc transition

- The best samples already grown show a dark conductivity of 10⁻⁸
 S/cm for a photogain around 100
 - ➔ These samples will have lower electrical performance than the recommended ones from literature

Outline

- o Materials
 - UNDOPED nc-Si:H
- o Results
 - Structural Characterization
 - Stress measurements and transmission electron microscopy (TEM)
 - Atomic Force Microscopy
 - XRD, Raman spectroscopy, and FTIR
 - Electrical characterization
 - o C-AFIVI
 - Concluctivity vs T
 - Optoelectronic characterization
 - SPV (Surface Photovoltage Spectroscopy)
 - Photoluminescence measurements and Quantum confinement studies
- Conclusions
 - Correlation between growth parameters and material properties
- New Results on DOPED nc-Si:H
- Conclusions

Surface Photovoltage Spectroscopy for :

- Identification of the $nc-Si \rightarrow a-Si$ transition
- Determination of the energy gap E_G of the multiphase material
- Determination the crystal disorder via the amplitude of the Urbach tails
- Characterization of defective states (levels and bands)

Amorphous-crystalline transition (i) Energy gap and defective states

PHOS

UNIBO nc-Si:H, grown on Si, Xc < 65 %

Optical behavior typical of nc-Si:H; optical transitions at discrete energy levels, tail states lower than 0.1 eV

Optical behavior typical of a-Si:H; optical transitions at band states, tail states larger than 0.1 eV

Energy gap and Urbach tails vs crystallinity

	GAP (eV)	Urbach tails
Amorphous	1.87 (Tauc)	few hundreds of meV
Low Xc (<65%)	from 1.3 to 1.87	few hundreds of
amorphous-like	(Tauc)	meV
High Xc (>65%)	From 1.40 to 1.53	few meV
nc-like	eV	(<10meV)

Defect states: *a*-like vs nc-like

Low Xc: high Urbach tails (hundreds of meV), two defect <u>bands</u> localized in the amorphous matrix, high E_G.

High Xc: <u>single-level defect states</u> and detection of the crystalline phase, low Urbach tails (40-80 meV), lower $E_{G.}$

Amorphous or Amorphous-like Si intra-gap states. Origin of defective states? Hydrogenation

excitation from VB to state 2.0 \rightarrow occupied by *h* ?? D⁰ or D + [1] or strain-related defects [2] 1.86 eV 1.5 1.30 ev Energy (eV) excitation from state to CB ??? 1.00 eV 1.0 \rightarrow occupied by *e* 0.8 eV ?? D0 or D -[1] 0.6 eV 0.5 or strain-related defects [2] H introduction (by etching at roomT) 0.0 does not affect substantially the SPV peak, which is related to the defect ation These states should be not related with DBs, but to strain related defects [2]

UNIBO

[1] Nadazdy and Zeman, Phys Rev B 2004, Fefer Shapira Balberg APL 1995

[2] Theory, A. Mattoni, L Colombo, Univ of Cagliari

< DEGLI STUDI **Emission Spectra by Photoluminescence** Substrate temperature All substrates •56170 7578 7503 7502 All dilutions 1-0.0025 7575 7365 0.0020 280° C Intensity (a.u.) Intensity (a.u.) 210° C 0.0015 B 0.0010 0.0005 **PL** Bands ostrat A: States in the a-Si gap 0 0.0000 1.2 2.0 0.8 1.0 1.4 1.6 1.8 2.2 B: Deep defects in nc-Si 0.8 1.0 1.2 1.6 1.8 2.0 2.2 1.4 eV eV **D:** Substrate effects 7664 7786p9 7667 7853 (Street, Advances In Physics, 7927 1.0 1.0 1981, 593-676) 7928 7832 0.8 0.8 Intensity (a.u.) Intensity (a.u.) 305° C 250° C 0.6 0.6 0.4 0.4 0.2 0.2 substrate 0.0 0.0 0.8 1.0 1.2 1.8 2.0 2.2 0.6 1.4 1.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 eV eV

PL. Summary.

- Grain Size is strictly related with <u>A band</u> emission. Crystallinity with <u>B band</u>
- Laser Annealing suppreses A band intensity increasing the Mean Grain Size
- nc-Si/a-Si A band and nc-Si/SiO₂ emission band share analogous time distribution G(τ)

A band is the recombination of confined exciton in silicon nanocrystal inclusions in a-Si

Quantum confinement studies

- A correlation between the crystallinity and the intensity of the photoluminescence band A was found.
- This band could be generated from the emission of quantum confined states due to its energy position between the c-Si and the a-Si gaps.

The same band (A) could be observed also in a-Si:H samples and, in the literature, it has attributed to localized states in the amorphous matrix.

Outline

- o Materials
 - UNDOPED nc-Si:H
- o Results
 - Structural Characterization
 - Stress measurements and transmission electron microscopy (TEM)
 - Atomic Force Microscopy
 - XRD, Raman spectroscopy, and FTIR
 - Electrical characterization
 - S (C-AF)∑I
 - Conductivity vs T
 - Optoelectronic characterization
 - SPV (Surface Photovoltage Spectroscopy)
 - Photoluminescence measurements and Quantum confinement studies

• Conclusions

- Correlation between growth parameters and material properties
- Latest results on DOPED nc-Si:H
- Conclusions

Conclusions. Correlation between growth parameters and thin-film properties

Growth parameter	Material property	Detection Method
Dilution factor	crystallinity	Raman
SiH ₄ flux	Crystal fraction homogeneity	Raman
substrate	Microstructure	TEM
	Morphology (roughness, AGS)	AFM
temperature	Microstructure	TEM
thickness	Morphology (roughness, AGS)	AFM
Dilution factor/	Conductivity	I-V
crystallinity	Defects, energy gap, crystal disorder	SPV
	Photo- emission	PL

Conclusions. material properties independent on growth parameters

Material property	Detection Method
Electrical transport at nanoscale	C-AFM
H content	FTIR
Preferential orientation	XRD
Average nanocrystal dimension	TEM

DOPED Materials

p type

nc-Si:H grown by

Low Energy Plasma Enhanced Chemical Vapour Deposition (LEPECVD)

DOPED

Sample set	DOPANT	d [%]	dr [%]	Substrate	Ts[°C]	t[nm]
DOPED I p-type	В (В ₂ Н ₆)	1÷10	1 ÷ 10	Glass ZnO/glass	250	80
DOPED II n-type	P ?? controllare e	1÷10	1÷10	ZnO/glass	250	80

d = dilution factor = Φ (SiH₄)/ [Φ (SiH₄) + Φ (H₂)] X_c crystal fraction determined by RAMAN spectroscopy, t sample thickness

dr = dopant dilution ratio = $\Phi (B_2H_6)/\Phi (SiH_4)$

Conductivity of the p-doped nc-Si:H films

- As expected the conductivity increases with doping ratio to reach a maximum of 5-6 S/cm at <u>DR 6.3%!!!</u> In the literature the optimum DR is between 0.4 and 0.8% for VHF-PECVD or HWCVD
- The conductivity on one wafer varies for a factor 3 to 6

Conclusions

- What do we know about nc-Si:H?
 - Correlation between growth conditions and material properties
 - Microscopic electrical conduction mechanism (conduction occurs through the nanograins)
 - Defect states related to crystal disorder/ strain
- Is nc-Si:H a good material for PV applications?
 - high photogain obtained in some samples, very promising for PV applications, further improvements are possible
 - The knowledge of the correlation between material properties and growth conditions allows for solar cell optimization.

